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ABSTRACT

The signal response measured in diffusion tensor imaging is subject to detrimental influences caused by
noise. Noise fields arise due to various contributions such as thermal and physiological noise and sources
related to the hardware imperfection. As a result, diffusion tensors estimated by different linear and non-
linear least squares methods in absence of a proper noise correction tend to be substantially corrupted. In
this work, we propose an advanced tensor estimation approach based on the least median squares
method of the robust statistics. Both constrained and non-constrained versions of the method are consid-
ered. The performance of the developed algorithm is compared to that of the conventional least squares
method and of the alternative robust methods proposed in the literature. Two examples of simulated dif-
fusion attenuations and experimental in vivo diffusion data sets were used as a basis for comparison. The
robust algorithms were shown to be advantageous compared to the least squares method in the cases
where elimination of the outliers is desirable. Additionally, the constraints were applied in order to pre-
vent generation of the non-positive definite tensors and reduce related artefacts in the maps of fractional
anisotropy. The developed method can potentially be exploited also by other MR techniques where a
robust regression or outlier localisation is required.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Diffusion tensor imaging (DTI) is an outstanding non-invasive
technique providing valuable information on tissue microstructure
and is well established in clinical studies. DTI has been successfully
applied in diagnosis and evaluation of acute stroke, tumours and
various neurological disorders [1-3]. Most frequently, conven-
tional diagnostic DTI tools utilise the maps of diffusion scalar met-
rics such as the apparent diffusion coefficient, the fractional
anisotropy (FA), a colour FA and other rotational invariants. The
quality of these maps and, thus, the consistency of the diagnostic
outcome is dependent on the evaluation accuracy of the diffusion
tensors from the experimental raw data [4-7]. In turn, evaluation
precision is influenced by the noise level and the prescribed diffu-
sion gradient directions [8].

The signal in DTI experiments is distorted by the noise which be-
comes especially crucial in the range of high diffusion weightings
(the so-called “b-factors”). Severe artefacts may also originate from
the sources of physiological noise such as a cardiac pulsation, bulk
head motion, and respiratory motion. Hardware instabilities re-
lated to the technical imperfections produce additional contribu-
tions. As a consequence, diffusion tensor estimation becomes
unstable and may even give rise to non-positive definite tensors [9].
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Basically, modern methods of diffusion tensor estimation can be
classified into those based on the linear least squares (LLS), the
non-linear least squares (NLLS) and their counterparts using con-
straints (cLLS and cNLLS, respectively) [10,11]. These methods usu-
ally produce reliable results as long as raw data sets are not
contaminated by the outliers originating from noise. Measured sig-
nal attenuations corrupted by the outliers cannot be efficiently cor-
rected using either the Gaussian or Rician noise distributions. Such
error sets that cannot be treated by any known distributions and
are, generally, subject to investigation by the robust statistics
[12]. Numerous robust algorithms exist based on various robust
estimators such as M-, S-, Q-estimators, least median/trimmed
squares, repeated medians, etc. [12].

The first applications of robust estimators in DTI were demon-
strated by Mangin et al. [13] and Chang et al. [14]. The robust algo-
rithm proposed in Ref. [14], the so-called RESTORE, is based on the
well-known Geman-McClure M-estimator [15]. The M-estimator
allows one to localise outliers and to exclude them from the subse-
quent data fitting procedure. More recently, the problem of the
outlier localisation has been addressed in a dedicated study [16].
Using statistical analysis over a large data set, Walker et al. [16]
have shown that certain outliers in diffusion weighted images of
the human brain arise as a result of cardiac gating applied in the
acquisition scheme and tend, therefore, to have a common localisa-
tion within the images. It was concluded that a general assumption
postulating the homogeneity of the statistical properties of DTI
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across the brain is not valid. A disadvantage of the M-estimator
used in Refs. [13,14,16] is, however, that it is characteristic of a
rather low breakdown point. This means that in the cases in which
the number of outliers is close to the validation limit of the robust
estimator, it can lead to the wrong outlier detection. Unstable ro-
bust estimations become especially pronounced in the case of
non-linear regression or in the minimisation problem with con-
straints [17].

Improved approaches for diffusion tensor estimation were pro-
posed by Landman et al. [18,19]. The authors hypothesised that
noise fields are spatially variable and suggested an application of
the Q-estimator. Utilisation of the robust Q-estimator allowed
one to substantially reduce the inaccuracy of the diffusion tensor
evaluation by accounting for spatial variation of the noise fields
and by the implied procedure of outlier detection.

In this work, we propose a new, more robust and more stable
approach to diffusion tensor estimation based on the least median
squares (LMS) [12,20]. The LMS method and its modification the
least trimmed squares (LTS) algorithm, allows one to exclude the
artefacts related to noise straightforwardly during the minimisa-
tion procedure. This is in contrast to the RESTORE algorithm in
which the outlier detection and the fitting procedure are per-
formed as two subsequent steps. We developed the LMS algorithm
for the non-linear minimisation function using a constrained con-
dition of positive definite diffusion tensors that allows one to pre-
vent physically unjustified solutions.

Generally, the constrained LMS/LTS method is associated with
certain mathematical and numerical difficulties [17,21]. In
particular, solutions obtained by the LMS/LTS algorithm are not
unique and might be potentially prone to local instabilities. The
basic advantages of the LMS approach consist, however, in a
sufficiently high breakdown point level and a relatively simple
realisation of the numerical algorithm in comparison to other
robust approaches exploited previously in DTI data evaluation
[13,14,18,19].

The robust algorithm based on the LMS approach developed
herein is strictly non-linear and applied with constraints relevant
to the problem of diffusion tensor reconstruction. An application
of the new method is demonstrated with respect to simulated data
and in vivo experiments. The results are compared with the stan-
dard NLLS, RESTORE and their constrained counterparts.

2. Theory

In DTI experiments, attenuation of the measured signal, S;, in the
ith diffusion gradient direction is described as follows [4,9-11]:

S; = So exp(—bgDg;) (1)

where Sy is the signal amplitude in absence of diffusion weighting, b
is the diffusion-weighting factor [4,5], g; is the diffusion-encoding
unit vector, and D is a second order symmetric diffusion tensor.
Measurements in at least six non-collinear directions are required
in order to enable evaluation of tensor components. In this case, a
solution of Eq. (1) can be obtained analytically by solving the corre-
sponding system of the linear equations. In practice, more than six
gradient directions are applied and the components of the diffusion
tensor are evaluated using the NLLS method with the minimising
objective, fiis, expressed as follows [10,11]:

N 6 2
Saus(d) = % > [Si — Spexp (injdjﬂ 2)
i=1

=

where N is the number of diffusion encoding gradients, d = [Dyx, Dyy,
Dy,, Dyy, Dy;, D] is a vector representation of the diffusion tensor
and X is an encoding gradient design matrix:
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The application of the Geman-McClure M-estimator algorithm
(RESTORE) [14] to the minimisation procedure requires an intro-
duction of a weighting function w;:
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where r; is a residual, that is, a difference between the experimen-
tally measured signal, S;, and its estimation; C is a scale factor esti-
mated through the median absolute deviation (MAD):
C=1.4826 x MAD. The weighting function w; allows one to detect
and reject the outliers from the DTI raw data under an assumption
that errors follow a Gaussian distribution. Alternative weighting
functions were suggested by other authors [12,17,20].

3. Constrained non-linear LMS/LTS approaches (cLMS/cLTS)

The classical least squares method exploits the sum of squared
residuals. In the least median squares method, the sum of squared
residuals is replaced by the median of squared residuals. As a re-
sult, one obtains a robust estimator with a high resistance to con-
tamination of the raw data sets by outliers. The amount of outliers
can reach up to 50% of the data set. For linear functions, the effi-
ciency of the LMS algorithm can be improved with the help of
the “least trimmed squares” [12,20]. In this case, the following
minimisation function is evaluated:

h
min Z(riz)lzN (3)
p

where residuals are arranged in such a way that r? <13 < ... <13
and h is a truncation factor [12,20,21]. With respect to DTI, the
LTS operates on logarithms of signal amplitudes rather than signal
amplitudes themselves. During linear regression, the LTS method
tends to converge much faster than the LMS method. In turn, an
application of linear regression algorithms in DTI evaluation leads
to substantial deviations in the estimation of the diffusion tensor
due to the noise effects [22]. The application of the LTS algorithm
can be easily generalised for the constrained non-linear optimisa-
tion [17,21] using Eq. (5). However, in the case of the non-linear
problem, the LTS tends to lose its former facility of faster conver-
gence, in contrast to the LMS.

In order to guarantee a positive definite solution an additional
constraint in the minimisation algorithm is required. One of the
most efficient ways of applying the constraint is based on Cholesky
decomposition [11,23,24]. The latter exploits the fact that the ma-
trix D can be represented as a multiplication of two triangular
matrices L:

P1 P2 P3
D=L'L, L=[0 p, ps (6)
0 0 ps

where the elements of the matrix L must obey the following
conditions:

p1>07 p4>07 p6>0 (7)

The vector representation of the diffusion tensor D in Eq. (2) can
now be easily rewritten via the elements of the triangular matrix L:

d = [0}, 0102, P1P3, PF + P3, P2P3 + PaPs, P3 + P2 + PR (8)
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The advantage of Cholesky decomposition is that an applied
constraint has a very simple form, see Eqgs. (6) and (7). However,
the original function in Eq. (2) becomes more complicated for
numerical computations since the vector d in Eq. (2) is now substi-
tuted by a more complex expression, Eq. (8). Alternatively, a non-
linear constraint can be expressed using the Sylvester criterion
[23]:

Dy >0, DuD,,—D;, det(D>0) 9)

It is noteworthy that for the constrained minimisation problem,
the conditions described by Eq. (9) are fully equivalent to those ex-
pressed by Eq. (7). The detailed description of different parametri-
sation schemes of the diffusion tensor representations can be
found in Ref. [11].

Due to limitations on the acquisition time, DTI is usually per-
formed either with multiple b-values but only a few gradient direc-
tions or with a large number of gradient directions but only a few
b-values. The multiple b-value experiments allow one to obtain
more detailed information about the tissue microstructure using
different non-Gaussian models of diffusion such as the biexponen-
tial fitting model [25,27], diffusion kurtosis imaging [26,27], and
others. In turn, the multiple gradient directions allow one to sub-
stitute the recurring acquisitions by redundant multiple coding
gradients, and the latter to apply more sophisticated algorithms
reconstructing the orientation distribution function of the diffu-
sion tensors and fibre tracking such as the Q-ball [28], high angular
resolution diffusion imaging [29], constrained spherical deconvo-
lution [30], etc. We provide two possible objective functions in
order to obtain the maximal efficiency in both cases: multiple
b-values and multiple gradient directions.

The experiments with multiple b-values usually are very time
consuming, especially in the case of high b-values (in range of [0;
7000] s mm2). In order to reduce the experimental time fre-
quently only six gradient directions are applied. With the con-
straints determined by Eq. (7) and the diffusion tensor elements
expressed by Eq. (8), the minimising objective, fonuvs, in the con-
strained non-linear least median squares algorithm can be formu-
lated as:

N
fonws =) median;[S; — So exp(—b;g; Dg;)|* (10)
i1
the indexes i and j refer to the direction of magnetic field gradients
and b-values, respectively. In the case of more complicated diffusion
model, for example, biexponential fitting, Eq. (10) can be easily
modified into following:

N
Soiexp = > _ median;[S; — aexp(—b;g] D) — (1 — @) exp(—b;g/ Dyion;))”

i=1

(11)

where Dy,s and Dy, are the fast and the slow components of the
diffusion tensor, respectively; a is the relative fraction of the fast
component.

In multiple gradient direction experiments the most relevant is
the LTS algorithm of Eq. (5) and the objective function of Eq. (2)
with or without constrained conditions of Eqgs. (7) and (8) due to
its faster convergence feature. The truncation factor h has to belong
to {[N/2] +4; N} interval. The detailed algorithm diagram is de-
scribed in Appendix A.

4. Experimental

In vivo diffusion studies were carried out with a whole-body 3T
Siemens MAGNETOM Tim-Trio scanner (Siemens Medical Systems,
Erlangen, Germany). The gradient system provided a maximal

gradient strength of 40 mT m~'. Diffusion-weighted images were
acquired using a bipolar gradient double spin-echo echo-planar
imaging pulse sequence provided by the manufacturer. In the
experiments with multiple b-values [0, 200, 400, 600, 800, 1000,
1500, 2000, 2500, 3000, 3500, 4000, 5000, 6000, 7000] s mm >
we used six non-collinear directions of the diffusion encoding gra-
dients. For six gradient directions we used dual gradient scheme. In
the case of 30 gradient directions the standard manufacturer
scheme and one diffusion weighting b=1000s mm~2 were ap-
plied. We studied two healthy volunteers 27 and 37 years old. In
the case of the 27 years old volunteer the voxel size in six direc-
tional experiments was 2 x 2 x 2 mm? and for 37 years old volun-
teer the voxel size in 30 directional experiments was
2.4 x 2.4 x 24mm?>. The echo times were 113 and 112 ms and
the repetition times were 1000 and 8900 ms, respectively. The
study was performed in accordance with the ethical approval from
the local ethics committee.

All results were post-processed using the in-house Matlab
scripts (Matlab, The MathWorks, Natick, MA, USA) and the robust
statistics package LIBRA: a MATLAB Library for Robust Analysis
(http://wis.kuleuven.be/stat/robust/LIBRA.html) [31].

5. Results

Below, the efficiency of the developed robust LTS/LMS algo-
rithms is compared with the least squares methods, NLLS and
cNLLS, and the alternative robust algorithm, RESTORE. A compari-
son is performed using two simulated data sets and experimental
in vivo diffusion data.

5.1. Example I: diffusion attenuation in the case of isotropic diffusion

We start here with a simple example in which the performance of
the developed LMS method is compared to the NLLS algorithm de-
scribed in Refs. [10,11] and the RESTORE algorithm [14] in the case
of multiple b-value simulations. The normalised reference signal
attenuation was simulated as an exponential function for isotropic
diffusion with the diffusion coefficient D = 3 x 10> mm? s~'. Rician
noise and outliers were added. The simulations were performed for
four values of signal-to-noise ratio: SNR =3, SNR =15, SNR =10 and
SNR = 20. Diffusion weightings were equal to [0, 250, 500, 750,
1000] s mm~2. Two outliers with random amplitudes were added
atb=250smm2and b=750s mm 2.

The results of the simulations are presented in Fig. 1. The reliabil-
ity of the robust algorithms, RESTORE and LMS, increased with
increasing SNR. The values of diffusivity obtained by the RESTORE
and LMS algorithms were: (3.8 1.1) x 10~> mm? s~! (RESTORE),
(3.2209)x 10 3mm?s~' (LMS) at SNR=3 and (3.0+0.2) x
103mm?s~! (RESTORE), (3.0+0.2)x 10 3>mm?s~! (LMS) at
SNR = 20. Since the NLLS method has 0% breakdown criterion to
the outliers all estimations obtained by the least squares have a
substantial deviation from the original diffusion coefficient: the esti-
mated value is 4.6 times higher at SNR = 3 and by more than 60%
higher at SNR = 20.

Fig. 2 demonstrates the results of statistical simulations for var-
ious outlier amplitudes and SNR levels. A total of 2800 attenuation
samples for isotropic diffusion were simulated for SNRs from 1 to
28 units with the added Rician noise distribution. Diffusion weigh-
tings were equal to [0; 250; 500; 750; 1000] s mm™2. One outlier
was added at b =750 s mm 2. In each simulation, the amplitude
of the outlier was randomly chosen from the interval [0; 1]. The
simulated data sets were fitted using three methods, the LMS,
NLLS, and RESTORE. The curves in Fig. 2 represent the averages,
(D), of the fitted values of D as a function of the SNR for each of
these methods. The bars show the standard deviations.
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Fig. 1. Signal attenuation and fits for isotropic diffusion with diffusion coefficient D = 3 x 10~> mm? s~ . Fits were performed by the NLLS (green dotted line), RESTORE (blue
solid line), and LMS (red dashed line) algorithms. The data points corrupted by outliers are marked by cyan circles. (a) SNR = 3. The corresponding reconstructed diffusion
coefficients were equal to (14.1 £6.5) x 107> mm?s~' (NLLS), (3.8 1.1) x 10> mm?s~! (RESTORE), (3.2+0.9) x 10> mm?s~! (LMS) (b) SNR=5. The corresponding
reconstructed diffusion coefficients were equal to (2.5 +3.5) x 107> mm?s~! (NLLS), (3.2 £ 1.1) x 107> mm? s~ (RESTORE), (3.2 + 1.1) x 10> mm?s~! (LMS) (c) SNR = 10.
The corresponding reconstructed diffusion coefficients were equal to (2.1 +1.3) x 107> mm?s~! (NLLS), (3.2£0.7) x 10> mm?s~! (RESTORE), (3.2£0.7) x 10> mm?s~!

(LMS) (d) SNR=20. The corresponding reconstructed diffusion coefficients were equal to (4.9 +1.5) x 107> mm?s

(3.0£0.2) x 1073 mm?s~" (LMS).
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Fig. 2. Average fitted values of the diffusivity as a function of SNR for the NLLS,
RESTORE and LMS methods. The fits were applied to simulated signal attenuations
distorted by the Rician noise and one outlier at b=750s mm 2 with random
amplitude from the range [0; 1]. For each SNR value, 100 samples were simulated
for the purpose of statistical evaluation.

Fig. 2 shows that the NLLS (red dotted curve) tends to consider-
ably overestimate the original diffusivity of 3 x 10~> mm? s~! (solid
magenta line) in the range of the relatively low noise levels in com-
parison to LMS (dashed blue curve) and RESTORE (solid green curve).
The standard deviation becomes extremely large at high noise levels.
In contrast, the LMS and RESTORE produce more reasonable fits for
high and moderate SNR levels. With increasing SNR, both LMS and
RESTORE exhibit the good fits, however, RESTORE has a tendency
to overestimate the original diffusion coefficient (see Fig. 2).

5.2. Example II: diffusion tensors

In this example, diffusion attenuations were generated for 6 and
30 orientations of the diffusion encoding gradients. Gradient orien-

251 (NLLS), (3.0£0.2) x 10> mm?s~' (RESTORE),

tations were the same as those used for in vivo measurements, see
the Experimental section. The values of b were equal to [0; 200;
400; 600; 800; 1000] s mm~2 for six gradient directions and [0;
1000] s mm 2 for 30 gradient directions. The original vector d
was formed for anisotropic tensor with vector elements equal to
[15x1073 0; 0; 15x1073 0; 3.0x103]mm?s™' and
FA = 0.41. The mean diffusivity was equal to 2.0 x 107> mm?s~.
The simulated attenuations were subjected to the influence of Ri-
cian noise for different values of SNR: 3, 5, 10, 20, and 40 units.
In the case of six-gradient-simulations one outlier was applied at
b=800smm™2 to all six directions; random outlier amplitudes
were chosen from the range [0; 3So]. In the case of 30-gradient-
simulations, we distorted by an outlier each fifth direction at
b=1000 s mm~2; random outlier amplitudes were chosen from
the range [0; 3Sp]. In order to obtain the statistical estimation of
the algorithm efficiency we provided 200 samples for each SNR
unit and each algorithm. The results of the simulations for 6 and
30 gradient directions are presented in Fig. 3a and b, respectively.

Fig. 3a and b demonstrate the principal difference between ro-
bust algorithms and the least squares method. In the case of the six
gradient directions (see Fig. 3a) the SNR plays a crucial role for dif-
fusion tensor estimation. At low SNR (equal to 3 or 5 units) a scat-
tering of the eigenvalues and eigenvectors is enormous for all
methods. In turn, at high SNR the robust algorithms, RESTORE
and LMS, demonstrate the substantial improving in contrast to
the classical NLLS one. The 30 gradient-direction simulations have
a better representation of the robust estimated tensors even at low
SNR (>5 units) (see Fig. 3b).

In Fig. 4a and b, we presented the averaged deviation of the an-
gle of the evaluated main eigenvector from the original direction
(see Fig. 3) obtained by NLLS, RESTORE and LMS/LTS algorithms.
The data is presented as a function of SNR. Fig. 4a refers to the case
of six-gradient-direction simulations. The original signals were dis-
torted by the Rician noise and outliers at b = 800 s mm~2 with ran-
dom amplitudes from the range [0, 3So]. In the case of the 30
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Fig. 3. The statistical estimations of the evaluated diffusion tensor presented in the form of the ellipsoidal skeleton for 6 (a) and 30 (b) gradient directions. The left solid
ellipsoid exhibits the original diffusion tensor and shows the coordinate axes. In each statistical sample, the original signal is distorted by the Rician noise and outliers.
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Fig. 4. The averaged angular deviation of the evaluated main eigenvector from the
original diffusion tensor obtained by the NLLS, RESTORE and LMS/LTS algorithms.
The curves represent a dependence of the angular deviation on the SNR: (a)
averaged angular deviation in the case of six gradient directions and one outlier at
b=800s mm~2 (b) Averaged angular deviation in the case of 30 gradient directions
and outliers posed in each fifth directions at b=1000 s mm~2.

gradient directions the averaged angle deviations are presented in
Fig. 4b. The original signals were corrupted by the Rician noise and
outliers posed at each fifth direction with random amplitudes from
the range [0, 3Sp]. Note that, according to Fig. 4a and b, the NLLS
algorithm cannot perform the reasonable assessments even at
SNR = 40.

5.3. Example IlI: in vivo study

In this example we investigate how various numerical algo-
rithms influence evaluation of the tensor eigenvalues and of the re-
lated FA maps in the human brain. The results are compared for
classical and constrained NLLS, original and constrained RESTORE
(about the constrained RESTORE see Appendix B), and LMS/LTS
algorithms. The fits of experimental diffusion attenuations were
performed on a voxel-by-voxel basis in the range of quasi-expo-
nential attenuation behaviour limited to b < 1000 s mm~2 in the
case of 30 gradient directions. The b-values in the case of six gradi-
ent-direction experiments are defined in Experimental section.

NLLS

cRESTORE

cLMS

0.2

0

Fig. 5. Colour coded fractional anisotropy maps estimated in the biexponential
fitting model (see Eq. (11)) by the NLLS, constrained RESTORE and constrained LMS
algorithms. (a) Colour FA maps of the fast component. (b) Colour FA maps of the
slow component. (c) Error maps of the biexponential objective function, Eq. (11).
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In Fig. 5a-c we show the colour coded FA maps estimated in the
biexponential fitting model by NLLS, constrained RESTORE and con-
strained LMS algorithms. Fig. 5a presents the colour FA maps of the
fast components of the biexponential fitting estimated by NLLS,
cRESTORE and cLMS algorithms. Fig. 5b presents the colour FA maps

141

of the slow component of the biexponential fitting model estimated
by the same algorithms. In Fig. 5¢ we plotted the error maps of the
objective function for the biexponential fitting model, Eq. (11).
Fig. 6a and b presents the quantitative comparison between
three methods: NLLS, constrained RESTORE and constrained LMS,
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Fig. 6. The quantitative comparison of the NLLS, constrained RESTORE and constrained LMS algorithms in the biexponential fitting model (see Eq. (11)). (a) The histograms of
FA maps of the fast (red) and slow (green) components of the diffusion tensor. (b) The dependence of the error-map histograms on the number of acquisitions/averages for the
NLLS (red), cRESTORE (green) and cLMS (blue).
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Fig. 7. The quantitative comparison of the constrained NLLS, RESTORE and LTS algorithms in the experiments using 30 gradient directions. (a) Colour FA maps obtained by the
cNLLS, RESTORE and LTS algorithms. (b) FA and error-map histograms of the cNLLS (red), RESTORE (green) and LTS (blue) algorithms.
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in the case of the biexponential fitting. In Fig. 6a we demonstrate
the histograms obtained for the fast (red curve) and slow (green
curve) FA maps. In Fig. 6b, the histograms of error maps are pre-
sented as a function of a number of acquisitions/averages.

Fig. 7a and b exhibits the difference between well known least
squares and RESTORE algorithms and the developed LTS for 30 gra-
dient-direction experiments. In Fig. 7a we presented the colour
coded FA maps obtained by constrained NLLS, RESTORE and LTS
algorithms. Fig. 7b shows the quantitative difference between
three algorithms via the FA (left) and error (right) map histograms.
Note that, although the visual difference between the histograms
of FA obtained by all methods is negligible, the error-map histo-
grams show significant differences, that is, the histogram obtained
by the cNLLS algorithm is much broader than the histograms ob-
tained by the robust approaches.

6. Discussion and conclusion

The three above examples were used to examine the differences
in performance of various approaches to diffusion tensor evalua-
tion. In particular, example I depicted in Figs. 1 and 2 demonstrates
that the methods based on the robust statistics, that is, the LMS
proposed in this work and the RESTORE proposed earlier in Ref.
[14] are less sensitive to the presence of outliers than the standard
least squares method, NLLS. This is especially obvious in the range
of relatively high SNR (>10 units) in which both the LMS and RE-
STORE provide a satisfactory mean estimation of the original ADC
value. This is in contrast to the NLLS approach which overestimates
the true value by about 20%. Thus, the robust statistics methods are
expected to be more advantageous whenever a suppression of the
outliers is required. In particular, a stability against the outliers
might be important for eliminating the outliers caused by the
physiological noise [16,18,19] in in vivo studies. Any particular
advantages of either of the two methods, the LMS and RESTORE,
were not detected in this example. The main disadvantage of the
above methods is, however, that they are not protective with re-
spect to generation of the negative eigenvalues when reconstruct-
ing diffusion tensors and are very sensitive to the noise level.

This problem is usually overcome in the extended versions of
both the robust and standard approaches by introducing con-
straints into the minimisation procedures [11]. However, a numer-
ical solution of non-linear minimisation problems, where linear or
non-linear constraints are included, becomes a complicated math-
ematical problem. In the case of the robust methods, it requires
that the algorithm be numerically stable; the properties of the clas-
sical approaches such as precision, computational speed, simplic-
ity, etc. are to be taken into account.

The efficiency of the least median versus the least squares
method, the LMS/LTS and NLLS, respectively, and RESTORE with re-
spect to estimation of tensor eigenvalues/eigenvectors was dem-
onstrated for simulated data corrupted by Rician noise and
outliers, Example II. Satisfactory fits were produced by the LMS/
LTS and RESTORE methods in contrast to the NLLS method. In the
case of multiple b-values, the advantages of the LMS algorithm
are seen in Fig. 3a. The statistical deviations of the diffusion tensor
skeletons are much smaller at SNR > 10 than they are for NLLS or
RESTORE. The angular deviations of the orientation of the main
eigenvector from the original diffusion tensor have a minimal val-
ues for LMS (5° + 3°) and RESTORE (8° * 5°) whereas the NLLS has a
mean angle of about 30° even for SNR = 40. These simulations al-
low us to claim that the experiments with multiple b-values de-
mands the application of the robust approaches in order to
provide more precise evaluation of the main eigenvector.

In current studies, the multiple gradient directions are widely
used. Excess gradient directional experiments allow one to in-
crease the SNR and, at the same time, to minimize a variance in

tensor estimations. The averaged statistical deviations of the diffu-
sion tensor skeletons in Example Il show only very small discrep-
ancies for the RESTORE and LTS algorithms (see Figs. 4b and 5b).
It is worth noting that differences between the algorithms in eigen-
values/eigenvectors at high SNR (>30) became negligible for robust
approaches. However, all algorithms strongly demands on a priori
noise correction, especially at high noise level (SNR < 5) (see, for
example Fig. 4).

In the Example Il we compared the performance of the LMS/LTS
approaches in their applications to the in vivo experiments. Inves-
tigations of the brain microstructure demand the novel models
describing the non-Gaussian diffusion in biological tissue. In par-
ticular, the biexponential model needs to apply very high b-values
where the SNR becomes extremely low and might be corrupted by
the noise or outliers. The application of the classical least squares
frequently cannot provide successful results due to large error vari-
ations for the slow component of the diffusion tensors. In Fig. 5¢
we see that error maps related to the NLLS algorithm exhibit a
few bright spots with high error values. This error variation has a
decisive influence on the estimation of the slow components of
the diffusion tensor (see Fig. 5b). However, we note that all meth-
ods improve their estimations with increasing SNR (see Fig. 6b).

A similar tendency can be seen in multiple gradient-direction
experiments (see Fig. 7a). Visually, it is very difficult to find out
the discrepancy in the colour coded FA maps. In fact, the histo-
grams of the FA maps are almost the same (see Fig. 7b, left plot).
However, the histograms of the error maps have characteristic dif-
ferences. The NLLS algorithm has a wide distribution of the error
while the histograms of the both robust algorithms, LTS and
RESTORE, are much closer to zero axis.

The performance of the approaches examined here is summa-
rised in Table 1. Each of the methods exhibits specific advantages
and disadvantages, and should be evaluated with caution. The cri-
terion of the positiveness of the evaluated diffusion tensors can be
introduced in all methods such as NLLS, RESTORE and LMS/LTS. The
main advantage of the robust approaches is a stability to the pos-
sible outliers which tend to rise up during the clinical or research
scans due to the noise. In order to assess a computational speed
of the applied algorithms, we estimated the averaged time re-
quired by each algorithm for the tensor evaluation in one single
voxel in the Example II. Finally, the noise level has a decisive role
in the diffusion tensor evaluation [8]. Our simulations demonstrate
a different influence of the noise level on an accuracy of the applied
approaches. The NLLS exhibits less sensitivity to the noise as oppo-
site to the robust algorithms, RESTORE and LMS/LTS, see, for exam-
ple, Figs. 3 and 4.

It is noteworthy that all regression algorithms are depended on
the initial guess. This feature of the methods leads to the non-
uniqueness of the obtained solutions. For the LMS or LTS algo-
rithms the good initial guess is a critical point as well. In order to
improve the evaluations of the robust approaches we suggest to
use the results of the classical least squares as an input (see Appen-
dix A). Another disadvantage of the robust approaches is a break-
down limit [12,20] which can lead to evaluation instabilities in
the regression procedure. Thoughtful planning of the experiments
may help to avoid this problem by supplying excessive information
for the robust regression procedures (for example, enough b-val-
ues, additional acquisitions, etc.) [33].

The developed algorithm, LMS/LTS, exhibits a sufficient compu-
tational speed, numerical stability and precision, and it is rather
insensitive to the presence of outliers. These features should allow
one to implement the LMS/LTS approach as an important tool in
the optimisation of data treatment from DTI protocols. One may
suggest that a proper selection of the correction methods for
post-processing will help to substantially increase the usefulness
and validity of DTI for clinical and scientific research.
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Table 1

A summary of properties of different diffusion-tensor reconstruction methods.
Feature NLLS RESTORE LTS LMS
Guaranteed positiveness No No™ Yes Yes
Stability to the outliers No Yes Yes Yes
Computational speed (averaged time per voxel in s) 0.04 £ 0.04 0.51+0.12 0.40 £ 0.09 0.12 £0.05
Stability to the noise level High Low Medium Low

" Original RESTORE [14] was realised without constraints. However, the algorithm can be easily modified with a demand of the positive definite tensors (see Appendix B).
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Appendix A

In this appendix we provide the details of the robust algorithm
based on the LMS/LTS approach. The flow diagram is presented in
Fig. 8.

We start with non-linear least squares fitting of the raw data.
The NLLS approach is implemented using Levenberg-Marquardt
minimisation algorithm [32]. Next step is an estimation of the fit-
ting criterion. The fitting criterion can be formulated through dif-
ferent definitions: the evaluated value has to be inside of the
confidential interval, the fitting estimations have to satisfy to a gi-
ven threshold, any kind of y? analysis, etc. The best fitting criterion
has to be chosen taking into account the details of the problem
(biexponential model, kurtosis imaging, Q-ball, etc.) in order to
avoid an erroneous treatment. If the criterion is satisfied the results
are stored in tensor maps; otherwise we have to choose: what kind
of the problem is to be solved? In the case of the multiple b-values
we apply the LMS algorithm based on Eq. (10). In the case of the
multiple gradient directions we apply the LTS algorithm based on
Eq. (5). Since the problem of non-positive definite tensors is
essential in both cases we use the Cholesky decomposition that
guarantee the feasible evaluations. The realisation of the Cholesky
parametrisation is done in Ref. [11].

Note that the minimisation problem of Eq. (10) in the LMS
method is solved using the Levenberg-Marquardt algorithm as
well. An application of the LTS algorithm has several steps. Using
the NLLS estimation as an initial guess we provided the iterative
steps in a following way:

Raw data
fitted by NLLS

No fitting No

criterion met?

LMS @ LTS
multiple b-values w multiple gradient
directions

Tensor map

Fig. 8. Flow diagram of the LMS/LTS robust algorithm.

Initial guess obtained from NLLS

. Evaluation of all residuals

3. Creation of truncated residual set using given h-factor from
Eq. (5)

4. Application of NLLS to the truncated residuals using the
Levenberg-Marquardt algorithm

5. Test fitting criterion: if the criterion is satisfied, stop the iter-

ations, else go to step 2

N —

The fitting criterion in the LTS algorithm was restricted by a
number of iteration steps equal to, approximately, 10-20
iterations.

Moreover, we have to consider an intermediate case when
determination of the area of the application of the robust statistics
according to the above criteria is not obvious: does a data set under
evaluation belong to the case of multiple b-values or to the case of
multiple gradient directions? The typical example refers to diffu-
sion kurtosis imaging. The solution might be compromised in a fol-
lowing way: if the number of the b-values is notably larger than, or
comparable to, the number of the encoding gradients we suggest
the LMS algorithm should be applied; in all other cases - one
should use the LTS algorithm.

Appendix B

The constrained RESTORE algorithm can be obtained by replac-
ing the non-linear least squares fitting with weightings in the dia-
gram flow of Ref. [14] with the constrained NLLS algorithm.
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